TRANSITION METAL CHEMISTRY
 III. A MORE EXACT METHOD FOR EVALUATION OF CO STRETCHING FORCE CONSTANTS OF PENTACARBONYL COMPLEXES OF TRANSITION METALS, BASED ON THE COTTON AND KRAIHANZEL FORCE FIELD

F. T. DELBEKE, E. G. CLAEYS, G. P. VAN DER KELEN AND R. M. DE CALUWE Laboratory for General and Inorganic Chemistry, B, University of Ghent, Krijgslaan 105, 9000 Ghent (Belgium)

(Received February 19th, 1970)

SUMMARY

Within the framework of exact secular equations, a rigorous algebraic method for calculating all the $C O$ stretching force constants of the complexes of general formula $\mathrm{LM}(\mathrm{CO})_{5}$ is possible yielding at once all the solutions, whether physically acceptable or not. This method does not imply interation and there is no need for estimating good initial approximations.

SYMMETRY

Monosubstituted metal carbonyls of the type $\mathrm{M}(\mathrm{CO})_{5} \mathrm{~L}$ with $\mathrm{M}=\mathrm{Mo}, \mathrm{W}, \mathrm{Cr}$, Mn and Re belong to the molecular point group $C_{4 v}$. For these compounds the theory predicts four CO stretching frequencies ($2 A_{1}+E+B_{1}$); the $A_{1}+E$ modes are both IR and Raman-active, whereas the B_{1}-mode only Raman-active.

CALCULATIONS OF FORCE CONSTANTS

Generally, the calculation of CO stretching force constants of metal carbonyls is based on the Cotton and Kraihanzel force field ${ }^{1-3}$.

For the compounds of the type $\mathrm{M}(\mathrm{CO})_{s} \mathrm{~L}$ (Fig. 1) there are five CO stretching force constants ($k_{1}, k_{2}, k_{\mathrm{c}}, k_{\mathrm{c}^{\prime}}$ and k_{t}) which must be evaluated from four vibration

Fig. 1. The $\mathrm{M}(\mathrm{CO})_{5} \mathrm{~L}$ molecule and the CO stretching force constants.
frequencies. Therefore all calculations of force constants have been done previously using the Cotton and Kraihanzel approximation method. This method is based on the assumption that $k_{\mathrm{c}}=k_{\mathrm{c}^{\prime}}=k_{\mathrm{r}} / 2=k_{\mathrm{i}}$.

The secular equations of the exact and approximation method for $\mathrm{M}(\mathrm{CO})_{5} \mathrm{~L}$ compounds are presented in Tables 1 and 2.

TABLE 1 .

EXACT FORMULATION OF THE SECULAR EQUATIONS FOR $M(C O)_{5} L$ COMPOUNDS

$A_{1}(1)$	$\mu \cdot k_{1}-\lambda$
$A_{1}(2)$	$2 \mu \cdot k_{c^{\prime}}$
$2 \mu \cdot k_{c^{\prime}}$	$\mu \cdot\left(k_{2}+k_{\mathrm{t}}+2 k_{\mathrm{c}}\right)-\lambda=0$
B_{1}	$\lambda=\mu \cdot\left(k_{2}+k_{\mathrm{t}}-2 k_{\mathrm{c}}\right)$
E	$\lambda=\mu \cdot\left(k_{2}-k_{t}\right)$

TABLE 2
APPROXIMATE FORMULATION OF THE SECULAR EQUATIONS FOR M(CO) L L COMPOUNDS

$A_{1}(1)$	$\mu \cdot k_{1}-\lambda$
$A_{1}(2)$	$2 \mu \cdot k_{i}$
$2 \mu \cdot k_{i}$	$\lambda \cdot\left(k_{2}+4 k_{i}\right)-\lambda$
B_{1}	
E	
	$\lambda=\mu \cdot k_{2}$ $\lambda=\mu \cdot\left(k_{2}-2 k_{i}\right)$

From the secular equations shown in Table 1 four equations in five unknowns are obtained and these necessarily result in an undetermined algebraic system. On the other hand, the number of force constants in the secular equations of the approximation method (Table 2) is reduced to three. This is obviously an oversimplification.

A better solution of the problem could be the assumption $k_{\mathrm{c}}=k_{\mathrm{c}^{\prime}}$ (four equations, four force constants) but it appears from our results that the assumption is not realistic.

In a recent paper Dalton et al. ${ }^{4,5}$ found some interesting relations [eqns. (5) and (6)] between the CO interaction force constants of $\mathrm{M}(\mathrm{CO})_{5} \mathrm{~L}$ compounds. These relationships result from orbital overlap theories developed by Bedon et al. ${ }^{6}$ and $K^{K e t t l e}{ }^{7}$ and based on the work of Jones ${ }^{8}$:

$$
\begin{align*}
& \frac{k_{\mathrm{c}^{\prime}}}{k_{\mathrm{c}}}=\frac{6}{2.4+1.4 y} \tag{5}\\
& \frac{k_{x}}{k_{\mathrm{c}}}=\frac{6.2+1.4 y}{2.4+1.4 y} \tag{6}
\end{align*}
$$

Their method for evaluation of the CO stretching force constants consists in the combination of eqns. (5) and (6) with the secular equations of Table 1 in order to calculate both A_{1}-frequencies, which generally could be found respectively to within $\pm 1 \mathrm{~cm}^{-1}$ and $\pm 4 \mathrm{~cm}^{-1}$ when the ratios $k_{\mathrm{c}^{\prime}} / k_{\mathrm{c}}$ and k_{t} / k_{c} were increased in small steps. It should be mentioned that such a procedure not only necessitates the estimation of good initial approximations but also gives rise to several solutions which are all compatible with the experimental data.
(continued p. 502)
J. Organometal. Chem., 23 (1970) 497-503
TABLE 3

Compound		Ref.	Frequencies (cm^{-1})				Force constants (mdynes/ \AA)				
			$\Lambda_{1}(1)$	$A_{1}(2)$	B_{1}	E	k_{1}	k_{2}	$k_{\text {c }}$	$k_{c^{\prime}}$	k_{t}
(I)	$\mathrm{Ph}_{3} \mathrm{PCr}(\mathrm{CO})_{5}{ }^{\text {a }}$	1	2070	1944	1989	1944	15.59_{1}	15.876	0.25476	0.7515_{4}	0.6063_{1}
(II)	$\mathrm{Ph}_{3} \mathrm{PMO}(\mathrm{CO})_{5}{ }^{\text {a }}$	1	2078	1951	1990	1951	15.58,	16.00	0.30973	0.3104_{7}	0.62021
(III)	$\mathrm{Ph}_{3} \mathrm{PW}(\mathrm{CO})_{5}{ }^{\text {a }}$	1	2074	1943	1981	1943	$15.43{ }_{0}$	$15.89{ }_{2}$	0.3359_{5}	0.3028_{8}	0.63883
(IV)	$\mathrm{Et}_{3} \mathrm{PMo}(\mathrm{CO})_{5}{ }^{\text {b }}$	9	2069	1947	1980	1941	15.53_{2}	$15.84{ }_{1}$	0.3099_{3}	0.30898	0.61891
	$\mathrm{Et}_{3} \mathrm{PMO}(\mathrm{CO})_{5}{ }^{\text {b }}$	4	2070	1941	1980	1948	15.32,	15.930	$0.3401{ }_{4}$	0.2576,	0.5977_{7}
(V)	$\mathrm{Et}_{3} \mathrm{AsMo}(\mathrm{CO})_{5}{ }^{\text {b }}$	10	2070	1943	1983	1943	15.477	$15.87{ }_{0}$	$0^{0.3006}{ }_{8}$	0.31640	0.6170_{9}
(VI)	$(\mathrm{MeO})_{3} \mathrm{PMo}(\mathrm{CO})_{5}{ }^{\text {b }}$	10	2080	1962	1993	1952	$15.81{ }_{9}$	$16.01{ }_{2}$	0.2924_{3}	0.3249_{5}	0.6173
(VII)	$(\mathrm{MeO})_{3} \mathrm{AsMo}(\mathrm{CO})_{5}{ }^{\text {b }}$	10	2088	1975	2006	1968	15.99_{6}	16.23_{3}	0.28069	0.3038_{1}	0.5845_{1}
(VIII)	$\mathrm{Cl}_{2}(\mathrm{EtO}) \mathrm{PMo}(\mathrm{CO})_{s}{ }^{\text {b }}$	10	2091	1985	2012	1976	16.146	16.33_{6}	0.2713_{5}	0.2890_{8}	0.5604_{2}
(IX)	$\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NH}_{2}\right) \mathrm{Cr}(\mathrm{CO})_{5}{ }^{\text {a }}$	2	2067	1890	1980	1935	16.640	$15.78{ }_{7}$	0.3052_{7}	0.35319	0.6584_{6}
(X)	$\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NH}_{2}\right) \mathrm{Mo}(\mathrm{CO})_{5}{ }^{\text {a }}$	2	2072	1895	1983	1938	14.711_{4}	$15.84{ }_{4}$	0.3145_{3}	0.3542_{3}	0.66876
(XI)	$\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NH}_{2}\right) \mathrm{W}(\mathrm{CO})_{5}{ }^{\text {a }}$	2	2071	1894	1974	1929	$14.68{ }_{6}$	15.73 ${ }_{8}$	0.3484_{2}	0.3545_{0}	0.7029^{3}
(XII)	$\mathrm{Ph}_{3} \mathrm{SiMn}(\mathrm{CO})_{5}{ }^{\text {c }}$	11	2098	2003	2030	2003	16.33_{5}	$16.68{ }_{3}$	0.2516_{1}	0.2214_{6}	0.4730_{7}
(XIII)	$\mathrm{Ph}_{3} \mathrm{GcMn}(\mathrm{CO})_{s}{ }^{\text {c }}$	11	2097	2002	2032	2006	16.30_{9}	16.711_{4}	0.2416_{2}	0.2134_{8}	$0.4551{ }_{0}$
	$\mathrm{Ph}_{3} \mathrm{GeMn}(\mathrm{CO})_{5}{ }^{5}$	4	2097	2006	2032.	2002	$16.44{ }^{5}$	16.66_{3}	0.2251_{8}	0.2434_{8}	0.4686_{7}
(XIV)	$\mathrm{Ph}_{3} \mathrm{SnMn}(\mathrm{CO})_{s}{ }^{\text {c }}$	11	2093	2002	2027	2002	16.30_{0}	16.647	0.24717	0.20546	0.4526_{4}
(XV)	$\mathrm{Ph}_{3} \mathrm{PbMn}(\mathrm{CO})_{5}{ }^{\text {c }}$	11	2091	2003	2029	2003	$16.34{ }_{2}$	$16.64{ }_{8}$	0.22470	0.2124	0.4371_{1}
(XVI)	$\mathrm{Ph}_{3} \mathrm{SiRe}(\mathrm{CO})_{5}{ }^{\mathrm{c}}$	11	2118	2003	2044	2012	16.36_{4}	16.892	0.2725_{3}	$0.2627{ }_{2}$	0.53525
(XVII)	$\mathrm{Ph}_{3} \mathrm{GeRe}(\mathrm{CO})_{s}{ }^{\text {c }}$	11	2118	2000	2047	2014	16.32,	$16.91{ }_{6}$	0.2573 ${ }_{\text {4 }}$	0.2700 ${ }^{\text {5 }}$	0.52740
(XVIII)	$\mathrm{Ph}_{3} \mathrm{SnRe}(\mathrm{CO})_{5}{ }^{\text {c }}$	11	2114	2003	2042	2012	16.34 s	16.87	0.2680_{1}	$0.2467{ }_{7}$	0.51478

TABLE 3 (continued)

Compound	Ref.	Frequencies (cm^{-1})				Force constants (mdynes/ $/ \AA$)				
		$A_{1}(1)$	$A_{1}(2)$	B_{1}	E	k_{1}	k_{2}	$k_{\text {c }}$	$k_{\mathrm{c}^{\prime}}$	k_{t}
(XIX) $\mathrm{Ph}_{3} \mathrm{PbRe}(\mathrm{CO})_{5}^{5}$	11	2114	2001	2044	2015	16.30_{0}	16.90,	0.2630_{0}	0.2390_{0}	0.5020_{0}
(XX) $\mathrm{Me}_{3} \mathrm{SnRe}(\mathrm{CO})_{5}{ }^{5}$	4	2108	2003	2034	2003	$16.36{ }_{7}$	$16.73{ }_{4}$	0.2701_{1}	0.2536_{6}	0.5237_{7}
$\mathrm{Me}_{3} \mathrm{SnRe}(\mathrm{CO})_{5}{ }^{\text {c }}$	11	2108	2003	2014	2003	f	1 .	s	f	s.
(XXI) $\mathrm{Me}_{2} \mathrm{ClSnMn}(\mathrm{CO})_{5}{ }^{5}$	4	2101	2006	2039	2011	16.40_{8}	16.79_{1}	0.2222_{3}	0.2287s	0.45097
(XXII) $\mathrm{Br}_{3} \mathrm{SnMn}(\mathrm{CO})_{5}{ }^{5}$	11	2122	2037	2060	2043	16.78	17.26_{4}	0.2545_{6}	$0.1449{ }_{9}$	0.3995_{4}
(XXIII) $\mathrm{Br}_{3} \mathrm{SnMn}(\mathrm{CO})_{s}{ }^{\text {c }}$	4	2122	2043	2060	2037	$16.97{ }_{1}$	17.192	0.2343_{5}	0.1923_{4}	0.4266 ?
$\mathrm{Cl}_{3} \mathrm{SnRe}(\mathrm{CO})_{5}{ }_{5}$	11	2141	2030	2077	2044	16.843	17.379	0.2258	0.2720 ${ }_{5}$	0.4979_{1}
(XXIV)a. $\mathrm{Br}_{3} \mathrm{SnRe}(\mathrm{CO})_{5}{ }^{\text {g }}$	11	2143	2030	2070	2046	16.70_{8}	17.41_{2}	0.2943_{0}	0.2034_{0}	0.4977
b. $\mathrm{Br}_{3} \mathrm{SnRe}(\mathrm{CO})_{5}{ }^{\text {c }}$	4	2143	2030	2090	2046	0	θ	9	\square.	8
(XXV) $\mathrm{C}_{2} \mathrm{~F}_{5} \mathrm{Mn}(\mathrm{CO})_{5}{ }^{\text {d }}$	12	2130	2023	2072	2038	16.76	17.25:	0.1925 ${ }_{2}$	0.27696	0.46948
(XXVI) $\mathrm{HCF}_{2} \mathrm{CF}_{2} \mathrm{Mn}(\mathrm{CO})_{5}{ }^{\text {c }}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	2134	2015	2073	2042	16.559	17.32s	0.2216_{7}	0.25577	0.4774
$(\mathrm{XXVII}) \mathrm{HCFClCF}_{2} \mathrm{Mn}(\mathrm{CO})_{5}{ }^{\text {c }}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	2133	2014	2072	2040	16.55 ${ }_{6}$	17.297	0.2185_{5}	0.2632_{4}	0.4817_{8}
	13	2132	2014	2075	1044	16.55 ${ }_{0}$	17.339	$0.2034{ }_{6}$	0.2549 ${ }_{1}$	0.45837
(XXIX) $\mathrm{HCCl}_{2} \mathrm{CF}_{2} \mathrm{Mn}(\mathrm{CO})_{s}{ }^{\text {c }}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	2131	2013	2072	2040	$16.54{ }_{4}$	17.287	$0.2091{ }_{4}$	0.2626_{6}	0.47180
(XXX) $\quad \mathrm{C}_{2} \mathrm{~F}_{5} \mathrm{Re}(\mathrm{CO})_{s}{ }^{4}$	12	2145	2013	2075	2038	$16.57{ }_{6}$	17.33_{5}	0.2492	0.3042_{3}	$0.5534{ }_{5}$
(XXXI) $\mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{Re}(\mathrm{CO})_{5}{ }^{4}$	12	2146	2014	2078	2039	16.52_{4}	17.35_{1}	0.2339_{1}	$0.3191{ }_{2}$	0.5530_{3}
(XXXII) $\mathrm{HCFClCF}_{2} \mathrm{Re}(\mathrm{CO})_{5}{ }^{5}$	$\begin{aligned} & 13 \\ & 16 \end{aligned}$	2147	2011	2075	2037	16.54_{8}	17.33_{s}	0.2568_{2}	0.3124_{3}	$0.5692{ }_{4}$
(XXXIII) $\mathrm{HCCl}_{2} \mathrm{CF}_{2} \mathrm{Re}(\mathrm{CO})_{5}{ }^{\text {c }}$	13	2147	2011	2074	2037	16.53_{2}	17.33_{5}	0.2644_{1}	0.30499	0.56939
(XXXIV) cis- $\mathrm{CFH}=\mathrm{CFMn}(\mathrm{CO})_{s}{ }^{\text {a }}$	17	2132	2014	2071	2037	16.58	$17.25{ }^{\text {s }}$	0.2116_{7}	$0.2781{ }_{4}$	0.4998_{1}

(XXXV)	$\mathrm{C}_{4} \mathrm{~F}_{5} \mathrm{Mn}(\mathrm{CO})_{5}{ }^{\text {c }}$	18	2132	2010	2073	2039	16.51_{7}	$17.28{ }_{1}$	0.2046_{5}	0.2779	0.4825_{8}
(XXXVI)	$\mathrm{CF}_{2}=\mathrm{CFRe}(\mathrm{CO})_{5}{ }^{\text {c }}$	19	2145	2002	2065	2040	16.23_{0}	17.35.6	0.3290_{2}	0.2120_{5}	0.5410_{6}
(XXXVII)	trans- $\mathrm{CF}_{3} \mathrm{CF}=\mathrm{CFRe}(\mathrm{CO})_{5}$	19	2143	2015	2065	2045	$16.40{ }_{5}$	17.39_{8}	0.3289_{4}	0.1715_{6}	0.5005_{0}
(XXXVIII)	I) $\mathrm{cis}-\mathrm{CF}_{3} \mathrm{CH}=\mathrm{CHRe}(\mathrm{CO})_{s}{ }^{5}$	20	2143	1998	2070	2029	16.36_{2}	17.22_{4}	$0.2550{ }_{2}$	0.3347 o	0.5897,
(XXXIX)	$\mathrm{CF}_{2}=\mathrm{C}=\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{Re}(\mathrm{CO})_{s}{ }^{\text {c }}$	18	2148	2012	2070	2042	16.431	17.39_{6}	0.31209	0.2360_{0}	0.5481_{0}
(XL)	$\mathrm{C}_{4} \mathrm{~F}_{5} \mathrm{Re}(\mathrm{CO})_{5}{ }^{\text {c }}$	18	2144	2012	2073	2038	16.530	17.33_{1}	$0.2598{ }_{0}$	0.2890_{5}	$0.5488{ }_{4}$
(XLI)	$\mathrm{C}_{8} \mathrm{~F}_{11} \mathrm{H}\left[\mathrm{Re}(\mathrm{CO})_{5}\right]_{2}{ }^{\text {c }}$	18	2148	2012	2070	2045	16.399	17.42,	0.3194_{0}	0.2122_{4}	0.5316_{5}
(XLII)	cyclo- $\mathrm{C}_{4} \mathrm{~F}_{5} \mathrm{Mn}(\mathrm{CO})_{5}{ }^{\text {c }}$	$\begin{aligned} & 19 \\ & 21 \end{aligned}$	2134	2022	2070	2048	16.570	17.391	0.2575_{2}	0.1861_{3}	0.44365
(XLIII)	cyclo- $\mathrm{C}_{6} \mathrm{~F}_{9} \mathrm{Mn}(\mathrm{CO})_{5}{ }^{\text {c }}$	19 21	2137	2020	2075	2047	16.60_{4}	17.39_{8}	0.2344_{2}	0.2332_{3}	0.4676_{5}
(XLIV)	$\mathrm{NC}_{5} \mathrm{~F}_{4} \mathrm{Mn}(\mathrm{CO})_{5}{ }^{\text {c }}$	22 23	2132	2015	2068	2042	16.496	17.31_{3}	0.2481 ,	0.2173,	0.46557
(XLV)	$\mathrm{N}_{3} \mathrm{C}_{3} \mathrm{~F}_{2} \mathrm{Mn}(\mathrm{CO})_{5}{ }^{\text {c }}$	23	2130	2018	2062	2043	16.46_{8}	17.309	0.2821_{2}	$0.1620{ }_{5}$	0.4441_{6}
(XLVI)	$\mathrm{NC}_{3} \mathrm{~F}_{4} \mathrm{Re}(\mathrm{CO})_{5}{ }^{\text {c }}$	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	2146	2010	2068	2037	16.43_{2}	17.329	0.3039	0.2592_{3}	0.56319

${ }^{a}$ In chloroform. ${ }^{b}$ In n-hexadecanc. ${ }^{c}$ In cyclohexanc. ${ }^{d}$ In tetrachloroethylenc. ${ }^{c}$ In nujol-mull. ${ }^{5}$ Physically unacceptable force constants. ${ }^{a}$ Negative y values.

In contrast, combination of the secular equations of Cotton and Kraihanzel in their exact formulation with the relationships (5) and (6) allows the solution of this system by gradually eliminating the various unknowns. In this way one arrives at a resolvent algebraic equation of the second degree in the unknown y, giving two sets of values for the force constants in perfect accordance with the spectroscopic data. It is evident that one of these sets must be physically acceptable. Nevertheless, using eqns. (5) and (6) the two values of y thus found are both negative. Since y is a factor related to the change in π-overlap integral occurring on the replacement of a CO group by L in a metal carbonyl ($S_{i} \rightarrow y \cdot S_{i}$), it cannot be negative.

It is, however, important to note that the eqns. (5) and (6) were derived from the relationships expressed by eqns. (7) and (8), by introducing angular correction terms in the treatment of Jones ${ }^{24}$.

$$
\begin{align*}
\frac{k_{\mathrm{c}^{\prime}}}{k_{\mathrm{c}}} & =\frac{3}{2+y} \tag{7}\\
\frac{k_{\mathrm{t}}}{k_{\mathrm{c}}} & =\frac{5+y}{2+y} \tag{8}
\end{align*}
$$

We therefore also combined the exact Cotton and Kraihanzel secular equations with the eqns. (7) and (8) to derive the second degree equation in y. We found negative and positive y roots, the latter resulting in physically meaningful sets of values for the force constants (Table 3).

Furthermore, when the values of force constant $k_{c}, k_{c^{c}}$, and k_{t} thus obtained are used to recalculate values of y using relationships (7) and (8), equal values of y are found for one and the same compound, irrespective of the equation used for the calculation.

The calculations were mainly carried out in double precision on the IBM 360 type 30 computer of the Computing Laboratory of the University of Ghent, Director Prof. Dr. C. C. Grosjean.

DISCUSSION

The assignment of the frequencies of compound (IV) made by Dalton et al. ${ }^{4}$ differs from that given by Poilblanc and Bigorgne ${ }^{9}$. By analogy with $\mathrm{Et}_{3} \mathrm{AsMo}(\mathrm{CO})_{5}$ and $\mathrm{PPh}_{3} \mathrm{Mo}(\mathrm{CO})_{5}$ we prefer the assignment of Bigorgne. There are also two possible assignments for $\mathrm{Ph}_{3} \mathrm{GeMn}(\mathrm{CO})_{5}$ [compound (XIII)] arising from interchanging the $A_{1}(2)$ and E-modes. By the analogy with other compounds we choose the assignment of Jetz et al. ${ }^{11}$ and not that of Dalton ${ }^{4}$. The B_{1}-mode of compound (XXIVb) given by Dalton et al. ${ }^{4}$ could be erroneous, as we found two negative values of y. As cited by Dalton ${ }^{4}$ it is assumed that the B_{1}-mode of compound (XX) occurs at $2034 \mathrm{~cm}^{-1}$ and not at $2014 \mathrm{~cm}^{-1}$ as reported by Jetz et al. ${ }^{11}$.

In the Cotton and Kraihanzel force field the axial stretching force constant k_{1} must always be less than the radial one k_{2}. In the work of Dalton et al., however, some results are still contrary to this condition. They conclude therefore that either their CO stretch-stretch interactions are erroneous or the CK-force field restriction ($k_{2}>k_{1}$) must be waived and they prefer the second conclusion. On the contrary, using eqns. (7) and (8) instead of the relationships given by Dalton we found force constants which are
J. Organometal. Chem., 23 (1970) 497-503
in complete agreement with the Cotton and Kraihanzel restriction; therefore we must conclude that after all the relationships (5) and (6) could be erroneous.

Finally, it should be obvious that a more exact approximation for calculation of CO stretching force constants of $\mathrm{LM}(\mathrm{CO})_{5}$ type of compounds consists in simply assuming $k_{\mathrm{c}}+k_{\mathrm{c}^{\prime}}=k_{\mathrm{t}}$.

ACKNOWLEDGEMENT

The authors wish to thank Dr. J. Dalton for some kind information.

REFERENCES

1 F. A. Cotton and C. S. Kraihanzel, J. Amer. Chem. Soc., 84 (1962) 4432.
2 F. A. Cotton and C. S. Kraihanzel, Inorg. Chem., 2 (1963) 533.
3 F. A. Cotton, Inorg. Chem., 3 (1964) 702.
4 J. Dalton, I. Paul, G. Smith and F. G. A. Stone, J. Chem. Soc., A, (1968) 1195.
5 J. Dalton, I. Paul and F. G. A. Stone, J. Chem. Soc. A, (1968) 1212.
6 H. D. Bedón, S. M. Horner and S. Y. Tyrec, Inorg. Chem., 3 (1964) 647.
7 S. F. A. Ketrle, J. Chem. Soc., (1965) 1821.
8 L. H. Jones, in S. Kirschner (Ed.), Advances in the Chemistry of the coordination compounds, Macmillan, New York, 1961, p. 403.
9 R. Poilblanc and M. Bigorgne, Bull. Soc. Chim. Fr., (1962) 1301.
10 G. Bouquet and M. Bigorgne, Bull. Soc. Chim. Fr., (1962) 433.
11 W. Jetz, P. B. Simons, J. A. J. Thompson and W. A. G. Graham, Inorg. Chem., 5 (1966) 2217.
12 E. Pitcher and F. G. A. Stone, Spectrochim. Acta, 17 (1961) 1244.
13 J. B. Wilford and F. G. A. Stone, Inorg. Chem., 4 (1965) 389.
14 P. M. Treichel. E. Pitcher and F. G. A. Stone, Inorg. Chem., 1 (1962) 511.
15 J. B. Wilford, A. Forster and F. G. A. Stone, J. Chem. Soc., (1966) 1602.
16 J. B. Wilford and F. G. A. Stone, Inorg. Chem., 4 (1965) 93.
17 H. C. Clark and J. H. Tsai, Inorg. Chem., 5 (1966) 1407.
18 R. J. Goodfellow, M. Green, N. Mayne, A. J. Rest and F. G. A. Stone, J. Chem. Soc. A, (1968) 177. 19 P. W. Jolly, M. I. Bruce and F. G. A. Stone, J. Chem. Soc., (1965) 5830.
20 D. A. Harbourne, M. I. Bruce, F. Waugh and F. G. A. Stone, J. Chem. Soc. A, (1968) 895.
2I P. W. Jolly and F. G. A. Stone, Chem. Commun., (1965) 85.
22 J. Cook, M. Green and F. G. A. Stone, Inorg. Nucl. Chem. Lett., 3 (1967) 47.
23 J. Cook, M. Green and F. G. A. Stone, J. Chem. Soc. A, (1968) 1973.
24 J. Dalton, private communication.

